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ON THE METHOD OF GREEN'S FUNCTION IN

THE THERMOELASTIC THEORY OF SHALLOW SHELLS

By

R. P. Nordgren

Abstract

The method of Green's function is applied to the quasi-static

thermoelastic theory of shallow shells with heat conduction equations

included. Solution formulas are derived for middle-surface displace-

ments and stress and temperature resultants in terms of initial and

edge temperatures, internal heat sources, ambient temperatures at the

upper and lower surfaces, and surface tractions. Equations are given

for the Green's functions appearing in the solution formulas. Exten-

sion to more general shell theory is discussed. By way of example,

the method is applied to thermoelastic problems for tuo classes of

shallow shells. Also, the effect of transverse shear deformation is

examined with reference to a shallow spherical shell.

1. INTRODUCTION

This paper applies the method of Green's function to quasi-static

thermoelastic problems in the theory of shallow shells. Thermoelastic

equations for shallow shells follow from the original ,ork of Marguerre

(19 38)* upon addition of the elfect of thermal expansion. The two temper-

ature resultants appearing in these equations are governed by two-dimen-

sional heat conduction equations derived by Bolotin (1960) for thin shells.

For flat plates Bolotin's equations reduce to those of Marguerre (1935)

* The nonlinear terms contained in Marguerre's equations will not be
included here.



and for shallow shells they are independent of the form of the shell middle

surface.

Employing the indicated equations, solution formulas are derived which

express the middle-surface displacements and the stress and temperature resul-

tants in terms of the initial temperature, edge temperature, heat sources

within the shell, and ambient temperatures at the upper and lower surfaces.

The two sets of Green's functions in these integral solution formulas are

shown to satisfy the combined thermoelastic equations with the two resultant

heat-supply terms replaced by 5-functions. A related solution formula for

shallow shells under surface and edge traction is also obtained, together

with equations for the Green's functions appearing in it.

The solution formulas obtained extend immediately to a simplified theory

of shells (sometimes referred to as the "technical" theory of shells) pre-

sented, e.g., by Green and Zerna (1954). Extension to more general shel.

theory is possible and is discussed. The method of derivation of the thermo-

elastic solution formulas is applicable to other special theories of elasti-

city as well as to the three-dimensional theory. In this connection it

should be recalled that Parkus (1959, p. 13) gives a solution formula for

stress in quasi-static thermoelastic problems on the basis of analogy and an

intuitive argument. Also, integral formulas for several thermoelastic prob-

lems with unspecified temperature distribution are derived by Goodier (1958)

and Goodier and Nevill (1961). Singular solutions for shallow spherical and

cylindrical shells with concentrated temperature resultants are given by

FlUgge and Conrad (1956, 1958).*

The solution formulas derived here are applied to thermoelastic prob-

lems fox two classes of shallow shells, namely, unlimited shallow shells

with quadratic middle surfaces and rectangular shallow shells with simply

supported edges parallel to the principal axis of quadratic middle surfaces.

With the aid of a method of spectral representation established by Friedman

(1956), the thermoelastic Green's functions are obtained for the former class

in the form of a Fourier series of Hankel transform integrals and for the

latter class in the form of convergent double Fourier series. Both representations

Previously, one of these singular solutions for a shallow cylindrical
shell was proposed by Rabotnov (1946) as the solution for a concen-
trated normal force. However, an algebraic mistake occurred and, as
shown by FlUgge and Conrad (1958), the concentrated force solution

cannot be represented by a singularity of this type.
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appear suited to numerical evaluation. For three members of the class of

unlimited shallow shells, the Green's function is evaluated at the source point

as a function of time in terms of tabulated functions and comparison is made

with the dynamic thermoelastic Green's functions for bending of a flat plate.

An example of edge heating is studied for the class of rectangular shallow shells.

In the last section, the effect of transverse shear deformation is

examined with reference to an unlimited shallow spherical shell (parabaloid

of revolution) under specified temperature field and normal surface traction.

A quasi-static solution is obtained by the method of Green's function with

use of the extended definition of the Laplacian operator following Friedman

(1956). The character of the fundamental singularities is compared with that

of previous solutions by Reissner (1946) and by FlUgge and Conrad (1956) according

to classical theory, which neglects the effect of transverse shear deformation.

2. QUASI-STATIC THERMOELASTIC THEORY OF SHELLS

2.1 A Solution Formula for Heat Conduction. The two-dimensional heat con-

duction equations for thin shells derived recently by Bolotin (1960)

from a general variational principle for three-dimensional isotropic

(uncoupled) heat conduction with linear heat transfer at the boundary

may be written as

V - 1 eN
N N N K 6t QN'

(2.1)

v2eM MM K t QM '

where

2H 12 6H K
'N hK' M T2 K=Pc

h h1 P2+ d e 12 +
eN = hhJ. h Td3' M = -,.] Tx 3 dx 3 ,

2

(2.2)

Q fh2 Qdx+ H ( T++T

h

QN12 7 +f x-'dx 3 + 6HQN =  3 h + _ .
2
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In (2.1) the Laplacian is v2  a , where the covariant derivative

operator V refers to a curvilinear coordinate system xa (a 1 1, 2) on the middle

surface of the shell with metric a and conjugate metric aa, the surmation

convention being understood. The thickness of the shell is denoted by h and x3

is the coordinate normal to the middle surface. The temperature resultants e
N

and eM are expressed in (2.2) as integrals of the temperature T (above a fixed

reference temperature), and the derivation by Bolotin (1960) is based on the

assumption

T - + x3eM(x ). (2.3)

The heat inputs QM and QN arise either from internal heat sources of rate Q

per unit time per unit volume or from heat flux across the upper and lower sur-

faces of the shell where the ambient temperatures are Y+ and T_, respectively.

The surface conductance H, thermal conductivity K, specific heat c, and mass

density p are assumed independent of temperature as well as coordinates. On the

boundary curve C of the shell middle surface the temperature resultants may be

specified, i.e.,

eN 0 76 on C (2.4)

N 'N M H'

which is a special case of the linear heat transfer edge conditions given by

Bolotin (1960). In addition, 6 and e must satisfy the initial conditions
N M'

lim eN(XCt) = 0.(x"), lim 0(x ,t) = 0.(xa), (2.5)

t -4 o t -4 o

where T* - (9' + x9O* is the initial temperature of the shell.

N M

Since the heat conduction equations (2.1), (2.4), and (2.5) are of the

same form for eN and eM, we need only discuss solutions for 0N ; solutions for

eM then follow merely by replacing the subscript N by M. We shall use the linear

vector space of all functions 9N such that

, dt/ 0 N dS < 00 (2.6)

and the scalar product of two functions N and 0' in this space is defined as
N N

f dtf 8Ne' dS, (2.7)

where dS denotes the element of surface area on the shell middle surface.
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Equation (2.1) contains the operator

LN v 2 - (2.8),

whose domain will be the set of all functions e in the vector space such that
N

nmO/ /x and A6N/ t are piecewise continuous and of integrable square and
N P

such that 6 satisfies the zero initial condition lim 0 N 0 and the homo-N _oN

geneous boundary condition 9N = 0 on C. With the aid of Green's

theorem for surfaces, we may establish the identity

dtf ( -NLe*) dS -R (N-LNON N N)

dt n (e - % 6. ) ds (2.9)0, dt n NVo ON . N

+ f lim eNN - lim eN N dS,
t - o t 00N

where n is the normal to C and

L• 2 (2.10)LN 11N + _ T -[. O

is the operator adjoint to LN whose domain is the same as that of LN, except

that instead of a zero initial condition, lim e* 0 Thus, the right-hand
N

side of (2.10) vanishes when eN and 0*are in the domains of and LN aenthdanofN adLNo

respectively. The definition of L may be extended to functions 0" not in the
N N

domain of LN by letting

dtf BtBdS ef dt 8L*NSN (2.11)
0 R IN-Nl S- ,o I

where L 0" may be a symbolic function.
N N

We shall show that the Green's function for LN is the actual or symbolic

function GN(x,t;x',t') which satisfies

LNGN(x,L;x',t') = - 8(x - x') 5(t - t') , (2.12a)

GN(x,t;x',t') = 0 if t < t' , (2.12b)

GN(xt;x',t') = 0 , x on C , (2.12c)

where 5(x,- x') is the-two-dimensional 5-function and B(t - t') the one-

dimensional 5-function.
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Replacement of t by -t in (2.12) results in

LN*GN( * (x,x"1,t"I) = - 5(x-x")8(t-t") (2. 13a)

G(x ,  " (2.13b)

G(Xt;x",t) = 0 if t ; t", (2. 13b)

GN(x, t;x", t = 0, x on C, (2.Dc)

where

G*(x, t;x", t") = GN(x,-t;x',t") (2.14)

can be shown to be the Green's function for the adjoint operator LN . Identi-
S * N'

fication of N with GN(xt;x',t') and 0* with GN(X,t;x",t") in (2.9) leads to

the relation

GN(x", t";x', t') G(x',t';x", t"), (2.15)

while identification of e' with GN(x,t;x',t') and use of (2.15) results in
N N'

the following solution formula for 0N in terms of its initial values, boundary

values, and 0N:

ON(X, Pt dt' R) GN(X,t;x',t') QN(X',t')dS'

dt' /' na(x')7GN(x,t;xl,t')ON(x',t')ds' (2.16)

0 j !1Nxtxt)Nx

+ R, G N(Xt;xO) ON(x',O)dS.

A formula for 0M follows by replacing subscript N by M in (2.16).

2.2 A Solution Formula for Shallow Shells. We recall that the stress differ-

ential equations of equilibrium for shallow shells may be written as

V + p, = 0, (2. 17a)

V,3 Zl + VQ +P = 0 , (2.17b)

V P -e QC 0, (2.17c)

where N'P, Qc , 0$, p'- and p are the stress resultants, shear stress resultants,

stress couple resultants, tangential surface tractions, and normal surface

6



traction, respectively; Z is the distaqce of the shell middle surface from a

reference plane, and the covariant differentiation 7 now refers to a curvi-

linear coordinate system x in the reference plane. The strains y., and changes

in curvature K. of the middle surface of the shallow shell are given by

=z V v + Vv -2vV 3w, (2.18a)

= -aVPw, (2.18b)

where v and w are the tangential and normal displacements of the middle surface

of the shell. The constitutive equations for isotropic homogeneous shallow

shells, with the effect of thermal expansion included and the effect of transverse

shear deformation neglected, take the form

= Aa 1 - h aZN1AN (2.l9a)
S- Eh a ,

12p h - 12-e) (2.19b)

where

-=L-Vi (a"a , + aaqa )] (2.20)
A = -) vaa 2 +

and Young's modulus E, Poisson's ratiov and the coefficient of linear thermal

expansion (y are assumed independent of temperature as well as coordinates.

Upon substitution of (2.18) and (2.19) into (2.17) we obtain the relation

h2 Eh-

and the displacement equations of equilibrium

A9:0%n V(V v V W7 )1 -a a aP e + = 0, 22a

D;72e- V~ VVZAaO I V v .- ox~w] (2.22b)

* Marguerre (1938) and Green and Zerna (1954) employ displacements normal and

parallel to the reference plane (axial and longitudinal displacements) which

are related to the normal and tangential displacements w and v used here and in
other works by w and v - 7 Zw, respectively, to within the approximations in-

herent in the theory of shallow shells. Also, the second fundamental form of
the shell middle surface has the coefficient b V V V Z to within the accuracy
of shallow shell theory. cp a 0

7



- at' ( 2 zeN + 2 ) + p =o, (2.22b)

where

D Eha Ehc

With the aid of (2.17) and(2.18) and the divergence theorem, it is easy to

establish the relation

4j( l  1% + M lb Oa)dS = F (pava + pw)dS + I, (2.23)
/R

where

= f~ (?Ov - bO7w+ Qaw)flds, (2.24U)

and n is now the normal to the curve C bounding the region R occupied by the
projection of the shell middle surface onto the plane of the coordinates xa. In

the classical theory of shallow shells, since the effect of transverse shear de-

formation is neglected, the line integral in (2.24) should be written in an

alternate form to reflect the fact that only four boundary conditions may be

prescribed on C. Thus, following Green and Zerna (19541), we write the components

of the couple resultant on C for directions normal and tangential to C as

HNX=P n ,(2.25)

respectively, and for future convenience we do the same for the components

of stress resultant and tangential displacement, i.e.,

N = tfp~nn ,NT = sX ~

vN - n ,  vT = (2.26)

where 6 P and EV are tensors of the C-systems. Denoting the derivatives

along the normal to C by U/ n and )/ s, respectively, and defining the perhaps
)HTsymbolic derivative** through

wds HTsds, (.7

* See Friedman (1956), pp. 14O-l4.
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(2.24) becomes

Ia VNV -NTV,-H L + Vw] ds, (2.28)

where

+ HT
V = q(n, + s (2.29)

may be interpreted as the total shear resultant on C. If H has a jump

discontinuity of magnitude NIT at s - s', then by (2.27) and (2.29)

V -Oa + -k + A8(s-s'), (2.30)
B=s

where denotes differentiation in the ordinary (not symbolic) sense. The

last term in (2.30) represents a concentrated load which is a well-known

result in classical shell (and plate) theory. Appropriate boundary conditions

for shallow shells are apparent from (2.28) and may be listed as

either NN = N or v v N

N N N N

either NT - N T  or v v *
T T T (2.31)

either =N - HN or - ( N
* -- *

either V = V or w =w,

on C, where the starred quantities are boundary valucs. In a later section

we shall consider an example in which

N  N HVT = w = 0, on C, (2.32)

and these boundary conditions will be used to illustrate the method of the

present section. By (2.19), (L.23), and (2.28), the reciprocity theorem

(Green's formula) for shallow shells is

fR ['vu~ + p'w + c'(eN'Y% +-

(2.33)

par I + pw + C6 ht + teK d

ar %w 1
+ 'NvN' NTvT - N + Vw'ids

9



where primed End unprimed variables denote any two solutions of the shallow

shell equations. The thermoelastic reciprocity theorem (2.33) may also be

reached from the isothermal reciprocity theorem [eM = eN = 0 in (2.33)] by
means of an analogy between the isothermal equations and the thermoelastic

equations of shallow shells. 4- By (2.19) to (2.22), the analogy may be written

a aP-0 p a '7 N

+h2po = p - ,(v2zO _ V2e)

Pc=N 12 M

a a M (2.34)

a. ac ape
12 M

a a 2 , a ,
0 mQ + 2 aa PM

where subscript zero denotes a variable in the isothermal equations. As an

aid in discussing solutions of (2.22) it is convenient to denote components

of the middle surface displacement vector by Ui (i = 1, 2, 3) where

U - va (a = 1,2), U3 = w, (2.35)+

and consider the linear vector space of all Ui such that

fR (aaIVv P + w2 )dS < .
(2.36)

The scalar product of two displacement vectors Ui and U' in this vector

space is defined as

f (apv av' + ww')dS .(2.37)
R

+The analogy is similar to that given by Duhamel (1838) for three-dimensional

thermoelasticity, and the Betti reciprocity theorem has been extended to
thermoelasticity with the aid of this analogy by Goodier (1958).

+The only tensor properties of U are those of its components v and w
thich are a vector and scalar, respectively, with reference to tiansformations

of coordinates in the reference plane.

10



In (2.22) there appears the operator ZJdefined by

&3= _A (vv v z + VVy ZV)

(2.38)

Z.1 . -: av - c I C V3Z V Z

whose domain will be the set of all U in the vector space such that second

partial derivatives of U and fourth partial derivatives of U3 are piecewise

continuous and of integrable square and such that Ui meets homogeneous boundary
conditions on C of the form (2.32) with N* =H = 0. Then (2.22) may be written

N --N
as

as _A + Pi = 0 , ( 59)
.3

where
P p, P3 p, O Qa?

0N (2 .40 )

h2e3 .a'(V 2ge + - 2e)

N 12 M

By (2.39), the reciprocity theorem (2.53) becomes

f -Z2'juj + 61') U~ + fl(e-)uldS + I(U',u)

(2.41)

= R~ 4~~+ 8 1)U' + ri(&uijdS + t(u,u'),

where i(e) is the operator defined by

fl,(e) -- e'NaC v

T3(e) _-a,(e v2 + h.9. v2 )
N 12 M

and

I(UU) E - N+ V'~os(2.4+3)

etting ON = 0:M - 0 in (.41), ljis seen to be elf-adjoint and may be

11



extended to functions U i not in its domain by the definition

fR UJ'U'; dS d U dS. (2.44)

We shall show that the Green's function for SJ2 is the perhaps srmbolic

(tensorial) function Gij(x;x'), which satisfies the equation

ZUJG (Xx') -5 1(x-x') , (2.45)

and homogeneous boundary conditions* corresponding to (2.32) which %ith the

aid of (2.19) and (2.26) may be written as

N n n A( k  [VXG i(x;x') - C,,i(x;x')vV77 z] = 0Ni a p Xcz T3i

H h2 P13" V V Qi(x;x') - 0 (2.46)KNi 12 -X I

VTi n c Gai(x;x') = 0 , Gji(x;x') = 0

for x on C. In (2.41), identification of U with Gjk (x;x') and U' with

Gjl(x;x") followed by application of (2.45) and (2.46) yields the relation

Gkl(x ;X1) = Glk(X",x') (2.47)

Similarly, identification of U' with G in (2.41) and application of
j jk(x;x) (.1

(2.32), (2.39), (2.45), (2.46), and (2.47) results in

Ui( f[Gix;x') PJ(x') + n'" (e(x')) %i(x;x')] dS'Ui(x) R

(2. 48)**
+f [nO(x1)Gi (x;x')N*(x') Gxx)H~']d'

It should be noted that under some boundary conditions in the original problem,
the boundary conditions on the Green's function will not be homogeneous. For
example, if NN and NT are prescribed on C in the original problem, corresponding
homogeneous boundary conditions on the Green's function would not be possible in
view of over-all equilibrium requirements. In such cases the Green's function
must satisfy inhomogeneous boundary conditions which may conveniently be taken
in a form similar to rigid body displacements as done for a flat plate by Berg-
man and Schiffer (1953, p. 239).

The primed operators act on the x variables of the Green's function.

12



The solution formula (2.48) expresses the displacements in terms of the surface

and edge tractions and the temperature resultant field. In the absence of sur-

face and edge tractions (2.48) may be written as

where by (2.42)

oN (x;x') = P' [ (x')v Gf(x;x') -V12E (x') Gi3(x;x')]

(2.50)

'M (x;x') - aV'2 G (x;x')-1- 2 G3(

By manipulation of (2.45) it is easy to show that UN (x;x') satisfies (2.22)

with e = 8(x-x') and eM = p = p = 0, i.e.,

j VN (X;X') = Ux' acV 5(X-X'),

(2.51a)
U (x;x') = U'7 2g F(x-x')

while i (x;x') satisfies (2.22) with e= (x-x') and N, p 0, i.e.,

UJN (x;x,) = 0,
1 2(2.51b)

s ' UM (x;x') = "5 cX' V2 
5(x-x').

"N
Further, by (2.46), Ui satisfies the homogeneous boundary conditions

n .n A (. VN(X;X) - UN (x;x,)) - 0,

, P 3

no n f3%n - O, (2.52)

-N- N ;xnaqN (x;,) = U (;x') = 0, x on C,

and identical boundary conditions are met by .i . The stress and couple

resultants may now be obtained from (2.19) and (2.18) or(2.49).

2.3 A Solution Formula for Combined Thermoelastic Problems of Shallow Shells.

The solution formula (2.16) for heat conduction and the elastostatic solution

formula (2.49) may be combined and after interchange of the order of

integration written as

-13-



Ui(X, t ) = dr' N(x,t;xlt') Q (x',t')

+&e (x,t;x',t') QM(x',t') dS' - dt' (2.53)

+ X' (N, (XoO '+,t') + ($') d

+f~~~ ~ NXtX,)o~, !1 (x,t;x,,O) eo(xI) dS',

where

N (x, t; x,,t,) =f £ (x)GNxt;x'I, tI) dSI, (2.54Ii)
vR

and similarly forYM . The truth of (2.53) is easily verified, since by

(2.51a) and (2.54)

eJ.9 N (x,t;x",t") a ' v Ga (x,t;x",t"),

L3J& N (x, t;x",t"I) = a, V2 Z G~ (X, t; X1, t It

(2.55)
YJ (X,t;x',t") 0

(xI t;xv, t)= 12 a' v2 GM (x,t;x",t"),

and then by (2.53) and (2.16)

U (Xt = Up V N w (x,t),

L3J ~ h2Xt , V V2 0 (x't)]
gs U (~t =cz V EON(x;t) 12+

which are precisely the field equations (2.39) with P = 0. By (2.54),

N andfM satisfy boundary conditions of the form (2.52). Thus,&N and

! play the role of Green's function for combined quasi-static thermo-

elastic problems in the theory of shallow shells and (2.53) determines the

middle surface displacement in terms of the surface or internal heating,

edge temperature, and initial temperature. By (2.16), (2.19), and (2.53) the

stress resultants are

-14-



NPP (x, t) =/ dr' 'N (x't;x',t') QN (x','

(2.57)

+ N (x,t;x',O) 0*(x')] dS '

where

- dr'(n (t') t =c %@ VXFt0 (xt;x't't
L- (2.58)

+&v't (,,7, ',1 Z N0x, ,, t,)tde

3 (x) a',O O(x) e

and similarly for I. By (2.58), INP is just the resultant obtained

directly from the Green's functions by an equation of the form (2.19a).

Similar expressions may be obtained for the couple resultants and shear stress

resultants. The question of existence of solution Ui for specified edge tem-

perature, initial temperature, and heating will not be considered here,

although some restrictions on the region R and on the specified functions

certainly will be necessary.

2.4 Remarks on Extension of the Results to General Theory of Shells. The method

developed in the foregoing may also be applied in the more general theory of

shells which are not necessarily shallow and in which the effect of transverse

shear deformation may also be included. The results obtained for shallow

shells apply immediately to the simplified theory (sometimes referred to as

the "technical" theory) of shells, presented, e.g., by Green and Zerna (1954),

the only change being that xO are regarded as middle surface coordinates

rather than coordinates in a referencc plane. With only slight modification,

the formulas of this section also extend to the version of shell theory+
commonly known as Love's first approximation, in which the constitutive

+There are at least three different versions of Love's approximation in the

literature. We refer here to the one given in vectorial form by Reissner (1941).
A full discussion and additional references are given by Naghdi (1962).



equations may be written as

NP= A (v b w) - a'aa9N

(2.59)
h 2  h2  apM = - ::~AaP (Vfq w + v (byv) : ,aB
12 T1 '17Y 7 M'

where the covariant differentiation now refers to a curvilinear coordinate

system on the shell middle surface and AaOX is given by (2.20) with 0

now being the conjugate metric for the middle surface coordinate system.

When (2.59) is combined with the general equilibrium equations for shells

we have

AC " V-(1 v b bw) + bQAP V V w

A 0' v V'v X X7) 12 p P IL T

+ ,by vl- a' [aP e - .- 0~ 7 eM1 + P' 0

(2.60)

h2 AV vw + 7 (b7 v)
22 7  

rb1 N1p

+ A b (Vv% - \1 w) - h2 7[21 + N] +P=0

which are of the form (2.39) but with the operator LY and the temperature

term 8i no longer given by (2.38) and (2.40). Also, it is easily verified

that the form (2.41) remains unchanged. Since the heat conduction equations

(2.1) with solution formula (2.16) are valid to the same degree of approxi-

mation as (2.59), it follows that the result (2.53) holds also for Love's

first approximation. However, the Green's function & (x,t;x',t') will now

be a solution of (2.60) operated on by LN with LNe - c.5(x-x') 5(t-t'),

eM = p = p a 0 and under appropriate boundary conditions. A similar

statement holds for~M and also for G in (2.48). In connection with

Love's first approximation, it may be recalled that integral formulas for

displacements and their derivatives for the isothermal case are given by

Naghdi (1960); these formulas are contained in (2.48) and its derivatives.

It should be remembered, however, that certain inconsistencies are present

in the constitutive equations (2.59) in that N a and MP do not vanish

identically under rigid body displacement, nor do they satisfy the equation

of moment equilibrium about a normal to the shell middle surface, except

for spherical shells.+ + While the degree of error is of the order (R being

++The lnrnnsfstencdies mentioned are also present in the constitutive equations
of shallow shell thcory, although they are not considered serious in view
of the assumption of shallowness.
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the minimum principal radius of curvature), and 11 << lis a basic postulate
Rof thin shell theory, nevertheless difficulties have been encountered in some

problems and at least on theoretical grounds improved constitutive equations

are desirable. To obtain improved theories, additional higher order geo-

metrical terms have been retained in numerous derivations of constitutive

equations and the (often) equally important effect of transverse shear de-

formation has sometimes also been included. A more complete discussion and

a detailed comparison of various constitutlive. equations is given by Naghdi

(1962). When more exact constitutive equations are applied to thermoelastic

problems of shells, the use of heat conduction equations of corresponding

accuracy seems desirable. Thus, the heat conduction equations for thin

shells derived by Bolotin (1960) could be improved by retaining geometrical

quantities of higher order in h/R, in which case it may also be necessary

to modify the assumption (2.3). Further, the temperature resultants eN and
em may not enter the constitutive equations in such a simple manner as in

(2.59).* While additional effort may be required to extend the present

method to thermoclastic problems in improved theory of shells, the main

ideas of the Green's function approach will still apply provided a recipro-

city (Green's) formula is available in simple form, as is the case for a

system of improved constitutive equations given by Naghdi (1962). In fact,

improved equations due to Flfgge for circular cylindrical shells are employed

by Goodier and Nevill (1961) to obtain formulas somewhat analagous to (2,49),

and they also derive similar formulas for various specific problems in theories

of thin bars, thin plates, membrane bhells, and three-dimensional elasticity.

In these as well as other problems, it should be possible to combine the

integral formulas for displacements in terms of the temperature field with

integral formulas for solution of appropriate heat conduction equations,

thereby obtaining formulas for displacements in the combined thermoelastic

problem as in the foregoing treatment for shallow shells.

3. APPLICATION OF THE QUASI-STATIC THEORY:

THERMOELASTIC GREEN'S FUNCTIONS FOR

TWO CLASSES OF SHALLOW SHELLS

3.1 A Class of Unlimited Shallow Shells. First we shall obtain the Green's

functions GN and GN for temperature resultants in an unlimited shallow shell.

Note, however, that the 9N and 9M terms in (2.59) do meet the equation of

moment equilibrium about a normal to the middle surface.
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These Green's functions are independent of the form of the middle surface,

since Z does not enter (2.12). Although GN and GM could be obtained from

the known Green's function for the two-dimensional heat conduction equation by

a simple transformation, fur illustrative purposes they are derived here

following the method established by Friedman (1956, p.293) since this same

method will be applied later to obtain the thermoelastic Green's functions

N and& . Thus, we may write (2.12a) as

G N (x,t;x',t') 2 - 8 (x 0 x'6 (t - t') .1

"IN 'Kt

and interpret the result with the aid of appropriate spectral represen-

tations for the Laplacian (in the entire plane) and (on 0 1_ t _ co with

zero initial condition), namely

8(x - x') = f 0 f '- 21 i-2(X2- 2) d~jdt2 , (3.2)

andI a+i
= a os(t-t') ds 

('3)

respectively, ;,here x, and x2 are rectangular Cartesian coordinates. By

(3.1) to (3-3) we have

Gx '0 a + ioo s(t-t') 2i~(x-x9)i 2 (x 2 -X)GN(x, t; x , t') Xds t d d

N~ 1 fa- ioo 5 + K( +2 + t) 54

which, upon introducing

s + K(2N + + ) = exp - ts - tK(I N + + U) dt, (3.5)

r2  (XI-x)
2 + (X, - XL)2

after some elementary manipulations, becomes
GN(x, t;x', t) het- (t-t') t - I:' 1 0,

N gttl Ktt') TI I I
(3.6)

= 0, t - t' < 0,

and a similar equation holds for GM (x,t;x',t'). Next, we consider the class

of unlimited shallov shells with middle surfaces of arbitrary quadratic form

\hich by an orthogonal transformation of coordinates may be brought to

**As noted by Friedman (1956), (3.2) and (3.3) contain the tuo-dimensiunal

Fourier transform theorem and the Laplace transform theorem, respectively.
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M - (41x2 + b2x2
2 )  (3-7)

where bi and b2 are the principal curvatures of the middle surface of the

shallow shell. For the class (3.7), Marguerre's (1938) formulation for elasto-

static problems of shallow shells in terms of w and an Airy stress function F,

in the absence of surface tractions and the presence of temperature resul-

tants, reads

Va 7 2 F + Eh (b2LI + b1L2) w + Eh o 2eN 0 (.8a)

D V27 2 w - (b eLl + b1 Le) F + (l-v) D CR2 M = 0

where

L, 2 2 L2 = 2 (3.8b)

and the stress resultants are

N1. -L 2 F , N2 2 = LjF, N12  -" (3-9)

By (2.18), (2.19), (3.7), and (3.9) the tangential components of middle

surface displacement to within a rigid body displacement may be written as

1 iI (L2F - VLIF) + b1w + aeN dxj, (3.10)

and an expression for v2 given by (3.10) with subscripts 1 and 2 interchanged.

To obtain the thermoelastic Green's function N (xt;x',t'), we replace F,

w, 6NP and eM in (3.8) by FN, 3 N , G., and 0, respectively, whence, with

the aid of (3.1), (3.8) yields

N k(bzL, + b1L)][V2 v b(t-t')

v4 S(k2(b2L, + [j 2][V-2x (.11)

N 8 + k2(b2L, + b1 L2 )2 v(x-x') (t-t')

where

- h  1 (1 - vh)

+For a shallow shell with middle surface analytic at the origin, (3.7) re-

presents the first significant term of the series expansion of 2 in the
neighborhood of the origin.
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This result may be interpreted using (3.3) and the spectral representation

- ) = I 01i(x- x) d. (3.12)

for the operator L and a similar representation for L2 . Thus, following the

procedure used to obtain (3.6), we find that

N kKd t ( - 2)

(3.13)
FN EhKd I-KTIN ( L-t + )

- - K t (1 + 1 2)

whr, I f +oo3f ( + ie2) 2 -K( .f + )(tto) (3.II$)

2 CO-m (g2 + t) ± ik(b 2 ,
2+ b1 2)

.ig1(x1 - x.) gi4 2 (x 2 - X) dti dg,

are complex conjugate functions. The component U N of the Green's function

by (3.10), (3.4), and (3.13) is

N Z W Ka -KTIN (t-t t ) +~ go + '0 Fi j(x-x1)_ qI~x

CO 0 (3.15)
(. + ( .2) o _Eva) + blk 2 (t2+ 1)(bk2  + bE) . 1

L (gl-+ t)4 + k' (b2t + bIE 2
2)2

- K( + g2)(t-t') £i 2(xa - 4) d d

and& N (xt;x',t') is given by (3.15) with subscripts I and 2 interchanged.

Following the same procedure as before, the Green's functions & are

found to be
&M. (.I+)K a '-K j(t-t,) (I+

&M. (+V) Ka -KTI(t-t) + 0 + 0

I f *1(3.16)

(E2 E2)b~,2+ b , E 2( ;: - y~)- b,(tj2+ t Y3 _1

(k2 + t ) + k2 (b 2  + b1 92
2 )2  J

-+ )(t-t,) 2it2(x2-x) del d 2 ,
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a Similar expression ford (xt$x',t'), and

4( ',(t-t') (i - 12).

Next, in order to study the integrals I and 12 defined by (3.14) we intro-

duce polar coordinates through

t. W p Cos 0 , 2 - P Sin 0

Ssn(3.18)
x-X1 -r. cos e, -x r sin e,

and then

roo or + 21t I-Kp2(t-t ,) I IXI cos( -e ) Dd~dp

S JO V 0 p2 + k (b.,sin2 40 + becos2 0) .(319)

Expansion of the denominator of (3.19) in Foqrier cosine series yields

f 0+ 2 a k 2  t-t)

f0c fo m 0am-±Op2 -

(3.20a)

2irp cos (s - cos 2m pddp

where

a0  k,p2) 
2  ± ik (bzsin2¢ + bcs2®),

T( 0 P2 ik bis n2( + b2 C 820(3.2pb)
(+ k,p2) 2 cos 2m4d1

m 11 p2 ± ik (bsin2o + b 2 cos2)

Evaluation of the definite integrals in (3.20b) is carried out in the

Appendix where it is found that

a0 (_ k,p2) = 1

ml

a (k,p 2) _ - (24% -k-

k 1 1 (3.21a)

for m 1, 2.1 %2

am ( k,p 2 ) 0 , for m Z 1, %1 % 12

with the notation
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1 1.

S(p2 + ikbl)2  X 2 - (p2 + ikb2 )
2

(3.21b)-( . - X2)(,X. + )-.

Recalling [Watson (1944)] that the Bessel function of first kind may be

represented by the integral
i-n J 2n i~cs

Jn(np) = I-r-- cosn~d,

and taking 0 e, (3.20a) reduces to
co

T 4- 2 1r ('l)m cos 2mO o' am (± k,p2)

m - 0 (3.22)
'I'Kp2(t't') ion (rp) pdp

which appears suited to numerical evaluation. At r =0, by (3.20) and

with p' - p" , (3.22) becomes

n f P ' -O K ( -t ') d ' (

3: 2  7 ikLP (p'± ikb 2t)3.3

which is in the forn of a Laplace transform and will be evaluated for several

specific shell geometries of the class (3.7). For an unlimited spherical

shell+ + (of radius R)

b, = b2  R (3.24)

and by (3.23) and a known Laplace transform [Erdelyi (1954)] we have at

r = 0

Il + I2 = 2g (-ci(T) cos T - si(T) sin T + 1 sin T] ,
2

1n. - 12 - 2i tci(T) sin T - Si(T) cos T + E cos -t] , (3.25)

kK (t-t')

where Si(T) and Ci(T.) are the sine and cosine integrals defined as usual by

++The unlimited shallow spherical shell is actually an unlimited parabaloid of
revolution which in the neighborhood of the apex may be regarded as equi-
valent to a spherical shell with edge sufficiently far removed from the
shallow region of interest.

-22-



Si(r) , sin y dy , Ci(o:) =- . of y dy. (3.26)
0

Also, for the shallow spherical shell, (3.21) and (3.22) result in

11 + +12 -- Kp'(t p) dp
S,2+ k2

0 " - R2  (3.27)
.- 2, i__ 00[ -Kp'(t-t') JC.F'

2ntik f ___To______d

11z 12 - R 0 p' + k2
k 2

and the solution is independent of e, i.e., it is axisy,.etric. For an

unlimited shallow circular cylindrical shell* (of radius R' with generators

X2 = conet.)

b, - 0 b2 - - (3.28)

and by a known Laplace transform [Erdelyi (1954)], (3.23) is

V iT' K0(K i T' kK, (t-t'), (3.29a)

hence at r - 0

11 + I1 = 2 [Jo( V) sin .' - YO(T.') cos '( ,

- 12 [J 0 (T') cos T', + Y0 (T) sinT'

where KO, JO, and YO are Bessel functions in the usual notation of Watson

(1944). For an unlimited shallow hyperbolic parabaloidal shell with

bi = - b2 = b > 0 , (3.30)

by a known Laplace transform [Erdflyi (1954)] , (3.23) yields

= 12 - [Ho(r") - Yo(")I],

(3.31)

= kKb(t-t'),

where H0 is Struve's function of first order as defined by Watson (1944).

*The unlimited shallow circular cylindrical shell is actually an unlimited

parabolic cylindrical panel, which in the neighborhood of the xj- axis
may be regarded as equlvalent to a circular cylindrical shell with edge
sufficiently far removed from the shallow region of interest.
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The solution for the unlimited flat plate (b, = b2  0) cannot be obtained as

a limiting case of the foregoing solution for unlimited shallow shells, since

for b1 = b2 = 0 , by (3.21)
Li

a0 =- , am = 0, m - 0 , (3.32)

and the integral in (3.22) is divergent. This result is due to the fact

that the spectral representation (3.2) for V 2 is not valid for solutions of

the plate equations. For an unlimited plate Green's functions can be obtained

with the aid of the extended definition of 72 [see (4.20)], but the Green's

function for the bending solution will contain a lnr term and an arbitrary

function of time. In this respect the Green's function for an unlimited flat

plate differs from those for unlimited shallow shells where the displacements

vanish at r = o and no arbitrary function of time is present. Thus, a com-

parison between quasi-static Green's functions for unlimited plates and

shallow shells is not possible, and the Green's function for the flat plate

will not be derived here. For a finite plate, hoi.ever, no such difficulties

arise.

The time variation of0 M (x,t; x',t') at the source point x = x'

(r = 0) is shown in Fig. I for the spherical, cylindrical, and hyperbolic

parabaloidal shallo shells. These results are obtained by numerical evalu-

ation of (3.16), (3.25), (3.29), and (3.31), for the values

h= =hb=-, v = 0.3, H = 0 (3.33)
R R' 30

where H = 0 has been chosen since H/hk << 1 in most problems of practical

interest. For qualitative comparison with these quasi-static Green's functions,

since a dynamic Green's function for shells is not available, Fig. 1 shows the

corresponding time variation of the dynamic Green's function's (x,t;x't')

at r = 0 for an unlimited flat plate as obtained by Nordgren and Naghdi

(1962) which may be written as

r~~M1 (l+V)cU -I( t-t')f . ' -

3 jn F ii KrMt-' -nyVC (t-t')]

(3.34~)

for 12K << 1 = ci(i) - - Si(ir).

As seen in Fig. 1, the time variation for the three shells is similar and

possesses a logarithmic singularity at t - t' and decays exponentially as
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t - t' - . It should be noted that the quasi-static Green's functions fail

to meet a zero initial condition, i.e.,

uId i (xt;x',t') 0 O , (3.35)
t-t, -40+

for general values+ of x and x'. However, in the actual solution formula

(2.53) for w,& M (x,t;x',t') 8M(x',t') is integrated with respect to t' and

if e M (x',t') is a piecewise continuous function of t' with eM (x',t') - O

for t' < 0, then w uill be continuous in t and vanish at t = 0. On the other

hand, if 014 (x',t') is an impulse (6-function), then the singularity in

&M (x,t;x',t') at t - t' gives an unrealistic result for w, indicating that

the dynamic solution should be employed. In the dynamic solution for the flat

plate,& M (x,t;x,t') = 0 at t = t' as desired. Mathematically, it is clear

that zero initial conditions cannot be imposed on the quasi-static Green's

function since time operators (inertia terms) are not present in the elasto-

static equations.
MIt should be noted that.Y 3 (x,t;x',t') given by (3.15) may differ con-

siderably frome. (x,t;x',t'), since by (2.2), N < < M when H/hk << 1.

Thus, will decay more slowly than&3 as t - t' -,o and for the spherical

and cylindrical shallow shells, by (3.13), (3.25), and (3.29b), a damped

oscillatory time variation of significant amplitude may be expected. For the

hyperbolic parabaloidal shell (3.30), by (3.13) and (1), (x,t;x',t') 0

at x = x'.

3.2 A Class o& jectangular Shallow Shells. Let us consider the class of shallow

shells (3.7) now with 0 ' x _ a and boundary conditions (2.4) and (2.32), i.e.,

w = V2  0 o , M 11  H , N11 = N* , on xj- o,al

W = v1  0 , M42 H* , N2 2 = N* , on x2 = o,a 2 , (3.36)

o o e =e , on =0,a . (x=5.37)
N N' M 14 ax a cx7

By (2.19) and (3.9), the homogeneous form of (3.36) is met if

+A similar situation occurs in the theory of elasticity where, e.g., the

thermoelastic Green's functions for the entire space according to quasi-
static theory as given by Parkus (19'9) do not vanish as t - t' -,0.
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=F- 2-0 onx 1 =o,alf
(3.38)

2w 62 F
w = -T = F = 'FX2 O, on X2 - oe2

N H - o = ,a. (3.39)
N M a 4

2

In view of (3.38) the domain of the operators .= - appearing in (2.1)

and (3.8) may be taken as the set of all integrable square functions which

vanish at x- O,aa and have piecewise continuous and integrable square

second derivatives with respect to x . Since by (3.38) L N vanishes at

x - O,aa , the operators in (3.8) of the form L L N be interpreted as LCg (3a a
(with the domain just specified) acting on LPN provided that N has piece-

wise continuous and integrable square fourth partial derivatives. Then,

since L1 and L2 commute, we mLy again follow the method established by Fried-

man (1956) and regard L and ) as constants in solving for the Green's

function. The result is interpreted using for - the spectral representation

(3.2) and for Ll and L2 the spectral representations

N(xi -XI) Z Y sin -T sin

sin a,.a
m = 1 (3.40)

5(x 2 -x2) a- 7 sin nax sin na.
a2  a2a

n= 1

respectively, which are given by Friedman (1956, p. 249). In this manner,

(3.1) yields the temperature Green's function

GN(x,t;x',t') = 4< 2 -K nN(t-t') exp [K(m'2+ n'2)(t-t)
N aja2 ep-~'+n2(- '

m= 1
n 1(3.141)

sin m'x, sin m'x{ sin n'x2  sin n'x,

where
M-, n -- ,(t
a, a2

and a corresponding expression for GM (x,t;x',t') follows upon replacing

nN by TM in (3.41). A similar technique applied to (3.11) results in
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N3  2kK( -K]N t-t' )
- a ~ (I

FN = 2EhK IeKICN(t-t') (I' +I )
ala

2

where

%1 m I n'2 )2 + ik(b 2 m'
2+ b1n'

2 )2

n - I (3.44)

sin m'x1  sin m'xj sin n'x2  sin n'xl

By (3.i0), (3.41), and (3.43) the remaining components N of Green's

N2function" N are

N.4Ka K N(t-t ) (Cos m'x

1 aja2  L M coI
m=l1

n=l

f(m'2+n'2)3 (n'2 _Vm'2 ) + blk 2 (m'2 + n' 2)(b2m'+ 2).

(M'2 + n'2 )4 + k2 (b 2m'
2 + bln'2 )

- 1} exp {-K(m'2+ n'2)(t-t') sin m'xj sin n'x 2  sin n'x,

and a similar expression for 2 (x,t;x',t') which is given by (3.45), with

M and N as well as subscripts 1 and 2 interchanged. By the same procedure

we obtain the Green's functions

M 2(1+v)Ka 2 -K1M(t-t')
aja2  (II W

00 (3. 46a)M 4(1+V)Ka -KnM(t-t') I (Cos M'x1-1)

(m' 2 + n' 2 )(b~m'
2 + bln' (n' 2-Vm'2 ) - b,(m'

2 + n'
2 )3

(m
2 + n

2 ) ' + k 
2 (b 2m'

2 + b1 n'
2 )2

- exp f-K(m 2+ n'
2 )(t-t') sin m'x {. sin n'x 2  

in n'x2  
(

a similar expression for /M (x,t;x',t'), and

FM. -2(I+v)EhKa -KM(t-t') ( - I ) (.6)
aja 2ki

where II and I are defined by (3.44).
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As an application of the formulas of Section 2 and the Green 's functions

just obtained for a class of rectangular shallow shells, we consider the edge

conditions (3.37) with

* (x,t) - f(x) X2 - 0, t A 0N -

- -f(xi) X2 -2 a2. I t k_ 0 ,

-o , x, , a , (5.47a)

S0, t< ,

and also take

H N*=QN=QM 0 00 o o , (3.47b)

where f(x1 ) is a continuous function of integrable square on 0 i x, 6 a.

By (2.16), (2.53), and (3.47), we have
%t az - G O (x ,t;x ,,t ,)] 0

GN(x, t) = ft dt' f- 0] N

+ ~-G (x,t;x' t')] x2  2 }f(xl) dxi,X 2 N t X 2 = a 2 1(3 .48)
ui(x,t) = f f {- i-4 (xsc;x',t')] ,, 0

+ ~r 2 x~t;x'~t')] ~2 2 }f(x')dxL
which with the Green's functions (3.41) to (3.45) become

eN (x, t) .L . 1 - exp £K(m'2 + ln 2 + nN)t.

M , I 2' + 4n' 2 + nN (5.49a)
n~l

2n'fm sin m'x sin 2n'x2

Uj(x, t1  exp .f-K(rn2+ in
a2i/ m'2 + 4n'2

n,, 1

fM, 2+ W~n 2 )N(4n12-vm 12) + blk 2(M'2+14n'2)(bpm'2+ b,4n,2

(M'2 + 4n'2)4 + k2(b2m '
2 + b,4n'2)2

(.1. 9b)

- 1 }9 (cos m'xl - 1) fm sin 2n'x2 ,

a similar expression for U2(x,t) and
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4k2  - ex -K (m' 2 + 4n1 2 +U (X, t) -;
M=- *2 L 4n'2 + n

mul
nul

{(m '2 + 4n'2)4 + k2 (b2m'
2 + b,4n 2)2 (3.49c)

(M' 2 + 4n' 2) (b2 m'
2 + b1 4n' 2 ) 2n'fm sin m'xj sir 2n'x2

where

fm 2 a f(xj) sin m'x. dx. (3-50)

By (2.57), (3,9), (3.h3) and (3.47) the stress resultants are found to be

N22 (x t) 4h} 1 - exp{"K(m12 + 4n't + M)

N12('t) m =m 2 + 4n' 2 + N
n= 1

(m12 + 4n , 2 )(.51)

(r' 2 + 4n' 2)4 + k2 (b2m'
2 + b1 4n'

2 )2

'K2n')3 sin m'xi sin 2nk2
m'22n' sin m'x1  sin 2n'x2

m' 4n'2 Cos m'xl cos 2n'X2

and similar expressions for M and are easily obtained. From the theory
of Fourier series it may be sAwn in'he usual manner [see, e.g., Friedman
(1956), p.271] that 0N (3.49a) converges nonuniformly to the boundary values
(3.47a). To this end we write (3.49a) as

eN = 21j L fm sin m'x1  sin 2n'x 2

+ I A (m, n) sin m'xl sin 2n'x 2

m=u 1
n=

where A (m,n) e r () as n .-ow Thus, the second series converges uni-

formly and is zero at x2 = O1a2 , while the first series converges to

(1 - ) Si: m'x3 fm (1 - jx-.) f(x 1 ) , 0 < x, < a 2  (3.53)
a2  a2

which approaches f(x1) and -f(xl) as x2 approaches 0 and a2 , respectively.

In a similar manner the remaining homogeneous boundary conditions (3.36) and
(3.47) may be shown to be satisfied by (3.49) and (3.51) with the series
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converging uniformly in each case. Note, however, that on x2 - 0 and

X2 = a2 , N 11 converges nonuniformly to the values -Eh a f(x1 ) and

Ehczf(xl), respectively.

4. DNPROVED THEORY OF SHALLOW SHELLS.

GREEN'S FUNCTIONS FOR AN UNLIMITED SHALLOW SPHERICAL SHELL.

4.1 Basic Equations. Formulation of Elastostatic Problems. We recall from

the note by Naghdi (1956) that the effect of transverse shear deformation

may be included in the theory of shallow shells [in a manner similar to

Reissner's (1945) improved theory of flat plates] by replacing (2.18b) and

(2.21) of the classical theory with

2K 17 + V , (34.1)

and

= Eh aZ (B + V W) (4.2)
Q 12(+v)c f(

respectively. The components of P reprPsent the changes in slope of the

normal to the shell middle surface, and the tracer c = 1 is introduced in

(4tP) to isolate the effect of transverse shear deformation in future mani-

pulations. Also, in some equations it will be possible to let c - 0 and

obtain the corresponding equation for classical theory.

In the absence of tangential surface tractions ( p = O), (2.17a)

leads in the usual manner to

=P.cc% o VXV7V F, (34.3)

where, by the compatability equation associated with (2.18a), together

with (2.19a) and (4.3), the Airy stress function F must satisfy

2
V1 2 F + EhEk V V 9 V Vw + Eh a V ON  = 0 (4.4)X ~ I

just as in classical theory. Introduction of (2.19b), (4.1), (4.2), and

(4.3) into (2.17b,c) results in

2
EZh N( C, + V w) + EQ V e p 7zyV. F (4.5)

+ p 0
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Ph +V.w) -D A v(

2(4.6)

+DcaV e -0.M

which contain the effect of transverse shear deformation. Next, by the two-

dimensional version of the Stokes-Helmholtz theorem of vector analysis we

may write

Pa -Va H, +a e% VXK , (4.7)

and then (4.6) becomes
2

V H' -- 1 (H' + w)-( + v) e-f

V 2 K 10 I -9 M(4.8)K' i0 K' -

where

2 2

ch2  

(4.9)

Letting

H - H' + f , K K' + %g, (4.10)

by (4.9), equations (4.7) and (4.8) read

a- + VK, (4.11)

V2 H - ' l(H+w) - (l + v)aem = o, (4.12)

V K - h K = 0 (4.13)

which are the same for all shallow shells, and (4.5) is

D(V H + V w) + &0 V V y V V F + p - o. (4.14)

Thus, all solutions in the improved theory of shallow shells may be repre-

sented in terms of F, w, H, and K which are governed by (4.4), (4.12), (4.13),

and (4.14). It may be noted that for flat plates (Z - 0), (4.12) and (4.13)

remain unchanged while (4.4) reduces to an equation for F alone and (4.14)
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reduces to an equation containing H and w. For bending of flat plates the

system (4.12), (4.13), and (4.14) with 9 = 0 is equivalent to the formulation

by Reissner (1945) which involves a stress function representation for Q .

4.2 Green's Functions for an Unlimited Shallow Spherical Shell Under Normal

Traction and Temperature Field. For a shallow spherical shell (of radius R)

referred to rectangular Cartesian coordinates xa

'XV a (4.15)
2R aR

the basic equations (4.4) and (4.14) simplify somewhat, while (4.11) and

(4.12) remain unchanged. For an unlimited shallow spherical shell the

solution may be written in the integral form

w(x) - p (x;x') p(X,) + wm(x;x') OM (x,)

(4.16)

+ wN(x;x') eN(x)j dxl ,

and similar expressions for F, H, and K, where the three sets of Green's

functions wp, Fp, Hp, Kp; wM, FM. HM, %; and wN, FN, H.N, % are solutions

of the basic equations with p = 5(x-x'), eM = 0N = 0; eM = 5(x-x,),
p . e = 0; and e N =(x-x'), p = 0 = 0, respectively. Thus, all threeN ' N ' M
sets of Green's functions may be obtained from solution of

22 Eh 2 _(
VV FG -- V w G =- Eha% 5(x-x') , (4.17a)

2 2 5F

X(v HG +V wG) - 1 - 5(xTx'G, (4.17b)

V HG (HG + wG) " (1 + V) c 8(x-x') (4.17c)

2 10V K G " c' KG 0 (4.17d)

where p, m and O are constants taken in turn as p 1 I 0 N O;

0= , p - = 0; and 0= , ffi - 0, for each set of Green's
H N N M
functions.

To solve (4.17) we introduce polar coordinates r and 6 through

x, - xj - r cos 0, x2 " = r sin e, (4.18)
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and recall that

(x-x') = r5r 419)
2 nir

and the definition of the Laplacian may be extended to functions U(r) not

regular at r 0 according to2
r ( + tim rU+ (r) imr 6r (4.20)

r r r -0 r r -40

where .e! r indicates differentiation in the ordinary (not symbolic) sense.

With the aid of (4.19) and (4.20), (4.17) may be written as

22 -Eh2 W Eiimh
Eb + (r) imr 2 F Eh

FG R GI+ r r 0

+ lmr ((2FG.Eh +2wG) 2V r limr (421a)
r r - 0 rrr -0

h_+ I a 2Obi~r~ r )
+ 2 2

(V IG + w0 ) -W F] + r (H + w
DLr (4.2lb)

.L FG) + lim(x (H+w) - F =,RD G r r-0 (H+ G RD )

(HC; + G wG) I+ (r) 0- --

(4,.21c)

r --1* 0

K- KG + l m r

KGl + Lr0

+ 5'(rL [ lim r KG] M 0
r -O

which are satisfied if each expression in brackets vanishes. The first

brackets in (4.21a,b,c,d) lead to the general symmetric solution

**The corresponding extended definition of the three-dimensional Laplacian
is derived by Friedman (1959), p. 255.
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WG B1 - B2 lnkr + ( - 1) .B3 10 ( 1 r)

B4 K. (t1r)] + (%t2- 1) [BSI, (tpr) + B6 F.( 2r)] 4.22a)

HG BI + B2 lnkr + B3 I. ( ar) + B4 K=(t 1 r)

+ B5I ( 2 r) + B6 K. ( 2r) , (4.22b)

4KG) y1o+ B K, Q 4.22c)

2

G B + B 1 nkr + RD LB3 t 1. (tir) (4.22d)

+ B4 2 K.( 1 r) + B 9t 1,( ,r) + B6 K. (t2r)t

where B1 , B2, . . . B are constants and

{ -- = k __ + i(1 ------ , (4.23)

2 21

Re t. 2 ', k 4 12 l-v) kx % = C[(1+V) 2 h<
hL!Rz 2 5L1-v j R

Recalling that

___ , as r-e, Re t>0, (4.24)

then in order that wG and KG have at most a singularity of 0(inr) as

r -4 o , B3 = B5 = B7 = 0, and without loss in generality, B1 = B9 = 0.

Further, since

li r Ko(,r) = lid V2 Kc(tr) = 0,
r -40 r 0

(4.25)
Iim r T- 2. ) 1 lmrK(r

0 r r-0O

(4.22) meet (4.21), provided

4
B.) + Rk a + t2 1+V)(

BLDtN +/lk + 1 (4.26)

1 0 - 2;1
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Thus, the solution (4.22) which determines the Green's functions is
2

"~~ 2 £
w + + 2 +V) aeM ]K.r)

2

N+ t (1 +() V)r)-R
2 2 - 1

F LR lnkr +-r- 2- - 7FR +Eh (427
G 29 n ~ ~ L N(.7

- ( + RkQo + (l+v) ) Ko( r)1.

2

To obtain corresponding results for the classical theory of shallow shells we

neglect the effect of transverse shear deformation by setting c = 0, in which

case for = = 0 (4.27) reduces to the solution given by Reissner (1946)M N

for an unlimited shallow spherical shell under concentrated load, and for
= 0 (4.27) reduces to the solutions given by Fl+gge and Conrad (1956) for

concentrated temperature resultants.

With the aid of (4.25), in the neighborhood of r = 0 (4.27) is

(l+v)c M"L i r 1 24 1
FG = R2 k - 2 r+ (EhD N a n KN r

FG r r nkr+.. - nkr(4.28)

2

+ kr in kr +... + 8 eN i n r+... 1

+G Rk ( a + 2 (+,) OM) K.v 2r

which differs from the classical theory (c = o 0). In particular, for

the case . = 0 = 0, according to the improved theory w -y as r- 6

M N P
while in the classical theory W u-n 0 as r - on. In this connection we

recall that in most other derivations of singular solutions for concentrated

loads in the classical theory of plates and shells, the requirement w - 0

as r - 0 is imposed a pr.ori; however, n o ofh reqtilrement is needed in the
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foregoing treatment. Indeed, the requirement wp - 0 as r - 0 for the

improved theory would lead to an incorrect result for the Green's function

as seen from (4.28). It may be recalled that Green's functions also are

unbounded at the source point in the three-dimensional theory of elasticity.

To see that the p term in (4.27) represents a concentrated normal force

at r = 0, by equilibrium considerations the total resultant normal force

VN . on a vanishingly small circular region with center at r 0 is

l 0 ( +r + NG ) r d 9. (4.29)

N-- rR r

By (4.2), (4.3), and (4.11) in polar coordinates with polar synimetry, we have

G D _ ,F C

Q - Te(H +wG) NG-r (4.30)

and by (4.28), (4.29) yields

V = p (4.31)
VN

as desired.

Green's functions for a flat plate with the effect of transverse shear

deformation included cannot be obtained as a limiting case of (4.27) as1

R -+ Instead, we must return to (4.21), let - = 0 , and then in theR
same manner as for the shallow spherical shell we obtain

w= r n r- i ( 1+ in + )U - 1 n

HD =2 r (-i- + v) az 0 In r (-2

HG =- r in r + 2,, M (4.32)
Eh C 7I

FG = " N h

When the effect of transverse shear deformation is neglected (c = 0),

(4.32) reduces to known results for classical plate theory. For the flat

plate the improved and classical theories give different fundamental

singularities only for the Green's function wp
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5. APPENDIX:

EVALUATION OF CERTAIN DEFINITE INTEGRALS

Here we shall evaluate the definite integrals (3.20b) by contour integration

around the unit circle in the complex 9 plane where

21i0
Z = r 2(5.1)

Thus, on the unit circle C (r = 1)

1 1 1 1
sin Z 2 Cos Z Z

sn 2i ' CO ~= 2

cos 2m , dZ =2i1dO

and for b, b2 (3.20b) becomes

2 2 d 2
a (+ k,p) i(?,2B (5.2)

0 2 1 z- (m + g- 0-1 )

am (± k,2) 2 _ %2N ( + m -) Z (5.3)

where l, %2 1 are defined in (3.21b). Consider

2 2

2 ~~ + (5.4)2~CX1 +1 1%214 + +it +i2

where denotes the complex conjugate of . We may write X and X2 in the

polar form

x1 (± k,p R= i , X2 ( kp 2 ) R2 e±12

(5.5)

whence

%3.2 + 2 = 2 RaR 2  COS ( " 1) (5.
(5.6)

2 (Vi -V2) 2-

Therefore, by (5.4) to (5.6)

.2 + 5:.%.2 0 5 1, (5.7)

, This method is used; e.g., by Churchill (1948).
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where the equality signs apply only when p = 0 for a special subclass of (3.7).

Excluding for now the case p = 0 , the integrand in (5.2) has a pole

inside the unit circle only at Z = P, hence by the residue theorem we have

a (±kp 2 (5.8)

Similarly, with the aid of the expansion

-I - ~..i Z j-2k iJ (.)0(:L Y- P) (3 - (5 9)

j =0 k=0

(5.3) becomes
m-

am (mkp + 5 -m 4 2 0m-2k-i

k = 0 (5.10)

m R; , b 1 #b 2 .

For the special case p = 0, since am (+ k, p2 ) appears in the integrand of

(3.2), it is sufficient to take

am (± k,O) = lim (±. k,p 2 ) , (5.11)

-4 0 (-1

where, by (5.9) and (5.10) the limit in (5.11) exists for b1 # h2 . For the

spherical shell b, - b2 , by (3.21b), %.I =  2 and (3.20b) yields (5.8) and

am (± k,p2 ) = 0, m ? i. (3.12)

Thus we have obtained the results expressed by (3.21a).

ACKNOWLEDGEMENT

The author wishes to thank Professor P.M. Naghdi for many stimulating

discussions and for helpful advice on the preparation of this paper.

-38-



0 0 0
0Q0*

IN/)

00

0 >;0

Figure 1. Time variation of the Green's functionep3 (tx'')at
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